Preparation and Properties of Double Network Hydrogel with High Compressive Strength

Author:

Kang Bo,Lang Qingli,Tu Jian,Bu Jun,Ren Jingjing,Lyu BinORCID,Gao Dangge

Abstract

In this work, p–double network (p–DN) hydrogels were formed by the interpenetration of poly(2–acrylamide–2–methylpropanesulfonic acid–copolymer– acrylamide) microgel and polyacrylamide. The initial viscosity of prepolymer solution before hydrogel polymerization, mechanical properties, temperature and salt resistance of the hydrogels were studied. The results showed that the initial viscosity of the prepolymer was less than 30 mP·s, and the p–DN hydrogel not only exhibited high compressive stress (37.80 MPa), but the compressive strength of p–DN hydrogel could also reach 23.45 MPa after heating at 90 °C, and the compressive strength of p–DN hydrogel could reach 13.32 MPa after soaking for 24 h in the solution of 5W mineralization. In addition, the cyclic loading behavior of hydrogel was studied. The dissipation energy of p–DN hydrogel under 80% strain was 7.89 MJ/m3, which effectively dissipated energy. Meanwhile, p–DN hydrogel maintained its original form while breaking the pressure greater than 30 MPa, indicating excellent plugging performance.

Funder

Bin Lyu

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3