High-Performance Polyurethane Nanocomposite Membranes Containing Cellulose Nanocrystals for Protein Separation

Author:

Antolín-Cerón Víctor-Hugo,González-López Francisco-Jesús,Astudillo-Sánchez Pablo Daniel,Barrera-Rivera Karla-Alejandra,Martínez-Richa AntonioORCID

Abstract

With the aim of exploring new materials and properties, we report the synthesis of a thermoplastic chain extended polyurethane membrane, with superior strength and toughness, obtained by incorporating two different concentrations of reactive cellulose nanocrystals (CNC) for potential use in kidney dialysis. Membrane nanocomposites were prepared by the phase inversion method and their structure and properties were determined. These materials were prepared from a polyurethane (PU) yielded from poly(1,4 butylene adipate) as a soft segment diol, isophorone diisocyanate (IPDI) and hexamethylenediamine (HMDA) as isocyanate and chain extender, respectively (hard segment), filled with 1 or 2% w/w CNC. Membrane preparation was made by the phase inversion method using N,N-dimethylformamide as solvent and water as nonsolvent, and subjected to dead-end microfiltration. Membranes were evaluated by their pure water flux, water content, hydraulic resistance and protein rejection. Polymers and nanocomposites were characterized by scanning electronic and optical microscopy, differential scanning calorimetry, infrared spectroscopy, strain stress testing and 13C solid state nuclear magnetic resonance. The most remarkable effects observed by the addition of CNCs are (i) a substantial increment in Young’s modulus to twenty-two times compared with the neat PU and (ii) a marked increase in pure water flux up to sixty times, for sample containing 1% (w/w) of CNC. We found that nanofiller has a strong affinity to soft segment diol, which crystallizes in the presence of CNCs, developing both superior mechanical and pure water flow properties, compared to neat PU. The presence of nanofiller also modifies PU intermolecular interactions and consequently the nature of membrane pores.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3