Enhancing the In-Plane Behavior of a Hybrid Timber Frame–Mud and Stone Infill Wall Using PP Band Mesh on One Side

Author:

Shen YinlanORCID,Yan Xingchen,Liu Hui,Wu GuofangORCID,He Wei

Abstract

Traditional village dwellings in China consisting of timber frames with mud and stone infill walls represent an important part of cultural heritage and civilization. Due to the lack of an effective link between the wood frame and the infill and the poor cohesiveness of clay, the masonry infill can collapse during an earthquake, whereas the wood frame suffers minimal damage. In this study, current retrofitting techniques for village buildings were investigated and discussed. A method using polypropylene (PP) band mesh and cement mortar to retrofit the timber frame with a mud and stone infill was proposed and the connection construction details were designed. In-plane static cyclic tests were conducted on two full-scale wood–stone hybrid walls reinforced on one side with different grid sizes of the PP band mesh. The failure behaviors of the reinforced and non-reinforced sides of the specimens were compared, and the failure mechanics and seismic capacity of the two specimens, i.e., the strength, stiffness, ductility, and energy dissipation, were investigated. The results were also compared with those of a previous frame with stone infill without pebbles and no reinforcement. The study indicated that the retrofitting method strengthened the integrity and lateral resistance of the hybrid structure and prevented the collapse of the stone infill of the reinforced surface in a plane earthquake. The grid size of the PP band mesh substantially affected the lateral performance of the reinforced specimens. The hybrid wall with the narrow PP band mesh grid (150 mm × 150 mm) had a higher lateral stiffness (79%) and lateral capacity (50%) than the wall with the wide grid (250 mm × 250 mm). However, the narrow PP band mesh resulted in a lower ductility of the wall than the wide PP band mesh. The involvement of pebbles in the stone infill led to collapses sooner and a weaker lateral resistance than in the structure without pebble infill.

Funder

National Natural Science Foundation of China

Science and Technology Project of Beijing Municipal Education Commission

China Postdoctoral Science Foundation

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3