Functionalization of PEG-AgNPs Hybrid Material to Alleviate Biofouling Tendency of Polyethersulfone Membrane

Author:

Fahrina Afrillia,Arahman NasrulORCID,Aprilia Sri,Bilad Muhammad RoilORCID,Silmina Silmina,Sari Widia Puspita,Sari Indah Maulana,Gunawan PoernomoORCID,Pasaoglu Mehmet Emin,Vatanpour VahidORCID,Koyuncu Ismail,Rajabzadeh SaeidORCID

Abstract

Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m−2·h−1 to 172.84 L·m−2·h−1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Phytopathogens in Agricultural Crops Using Nanodiagnostic Techniques;Challenges in Plant Disease Detection and Recent Advancements;2024-05-08

2. Harvesting marine microalgae Tetraselmis sp. using cellulose acetate membrane;Bioresource Technology;2024-05

3. A synergistic approach to improving antifouling and antibacterial properties of Ag/DBR/PES membrane;South African Journal of Chemical Engineering;2024-04

4. Nanomaterials in membrane technology;Handbook of Nanomaterials, Volume 1;2024

5. Design of antibiofouling membranes based on antiadhesion mechanism;Antibiofouling Membranes for Water and Wastewater Treatment;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3