Regularization for Unsupervised Learning of Optical Flow

Author:

Long Libo1,Lang Jochen1ORCID

Affiliation:

1. Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Abstract

Regularization is an important technique for training deep neural networks. In this paper, we propose a novel shared-weight teacher–student strategy and a content-aware regularization (CAR) module. Based on a tiny, learnable, content-aware mask, CAR is randomly applied to some channels in the convolutional layers during training to be able to guide predictions in a shared-weight teacher–student strategy. CAR prevents motion estimation methods in unsupervised learning from co-adaptation. Extensive experiments on optical flow and scene flow estimation show that our method significantly improves on the performance of the original networks and surpasses other popular regularization methods. The method also surpasses all variants with similar architectures and the supervised PWC-Net on MPI-Sintel and on KITTI. Our method shows strong cross-dataset generalization, i.e., our method solely trained on MPI-Sintel outperforms a similarly trained supervised PWC-Net by 27.9% and 32.9% on KITTI, respectively. Our method uses fewer parameters and less computation, and has faster inference times than the original PWC-Net.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3