Study on the Law of Influence of Seepage Field Anomalies on Displacement Field Induced by Leakage of Enclosure Structure

Author:

Chen Bingbing,Liu Ming,Deng Shenggui,Li Yao,Zhang Xuhai,Liu Tao

Abstract

The leakage of an enclosure structure will cause abnormal changes in the seepage flow field, which in turn can lead to the deformation of the enclosure structure and affect the surrounding geotechnical body. In this paper, a fiber-optic temperature measurement system is used to detect the location of the seepage points in a station of the Qingdao subway during open pit excavation, and the abnormal variation of the seepage field caused by the seepage points is obtained by numerical calculation and field measurement. Then, numerical simulation is performed to analyze the effects of seepage field anomalies on the deformation of the enclosure structure and surface settlement. It is found that the seepage flow caused by the leakage point has a significant influence on the surface settlement and the deformation of the enclosure structure. With the increase of excavation depth, the deformation of the enclosure structure increases and the maximum deformation position shifts downward. The deformation of the enclosure structure decreases when the leakage point exists. The surface volume also increases gradually with the excavation, and the maximum surface settlement position shifts outward significantly. The settlement range becomes larger when the leakage point exists.

Funder

Funding by the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Cause Analysis on and Prevention of Water Seepage during Construction of Deep Foundation Pits of Metro Works in Urban Areas;Zhao;Tunn. Constr.,2013

2. Leakage Reasons Analysis and Treatments of a Riverside Foundation Excavation in Deep Thick Sand Layer;Yang;Constr. Technol.,2022

3. A hybrid FBG-based load and vibration transducer with a 3D fused deposition modelling approach

4. Influence of Groundwater Seepage on Deformation of Foundation Pits with Suspended Impervious curtains;He;J. Zhejiang Univ.,2019

5. Influence of Waterproof Curtain Defect on Foundation Pit Deformation in Pre-dewatering Process;Jiang;J. Guangxi Univ.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3