Deep Time Series Forecasting Models: A Comprehensive Survey

Author:

Liu Xinhe1,Wang Wenmin1ORCID

Affiliation:

1. School of Computer Science and Engineering, Macau University of Science and Technology, Macao 999078, China

Abstract

Deep learning, a crucial technique for achieving artificial intelligence (AI), has been successfully applied in many fields. The gradual application of the latest architectures of deep learning in the field of time series forecasting (TSF), such as Transformers, has shown excellent performance and results compared to traditional statistical methods. These applications are widely present in academia and in our daily lives, covering many areas including forecasting electricity consumption in power systems, meteorological rainfall, traffic flow, quantitative trading, risk control in finance, sales operations and price predictions for commercial companies, and pandemic prediction in the medical field. Deep learning-based TSF tasks stand out as one of the most valuable AI scenarios for research, playing an important role in explaining complex real-world phenomena. However, deep learning models still face challenges: they need to deal with the challenge of large-scale data in the information age, achieve longer forecasting ranges, reduce excessively high computational complexity, etc. Therefore, novel methods and more effective solutions are essential. In this paper, we review the latest developments in deep learning for TSF. We begin by introducing the recent development trends in the field of TSF and then propose a new taxonomy from the perspective of deep neural network models, comprehensively covering articles published over the past five years. We also organize commonly used experimental evaluation metrics and datasets. Finally, we point out current issues with the existing solutions and suggest promising future directions in the field of deep learning combined with TSF. This paper is the most comprehensive review related to TSF in recent years and will provide a detailed index for researchers in this field and those who are just starting out.

Publisher

MDPI AG

Reference125 articles.

1. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks;Salinas;Int. J. Forecast.,2020

2. Traffic Flow Forecast Through Time Series Analysis Based on Deep Learning;Zheng;IEEE Access,2020

3. Rainfall Prediction: A Comparative Analysis of Modern Machine Learning Algorithms for Time-Series Forecasting;Oyedele;Mach. Learn. Appl.,2022

4. Wu, N., Green, B., Ben, X., and O’Banion, S. (2020). Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case. arXiv.

5. Macroeconomics and Reality;Sims;Econometrica,1980

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3