Solar Resource Potentials and Annual Capacity Factor Based on the Korean Solar Irradiance Datasets Derived by the Satellite Imagery from 1996 to 2019

Author:

Kim Chang Ki,Kim Hyun-GooORCID,Kang Yong-Heack,Yun Chang-Yeol,Kim BoyoungORCID,Kim Jin Young

Abstract

The Korea Institute of Energy Research builds Korean solar irradiance datasets, using gridded solar insolation estimates derived using the University of Arizona solar irradiance based on Satellite–Korea Institute of Energy Research (UASIBS–KIER) model, with the incorporation of geostationary satellites over the Korean Peninsula, from 1996 to 2019. During the investigation period, the monthly mean of daily total irradiance was in a good agreement with the in situ measurements at 18 ground stations; the mean absolute error is also normalized to 9.4%. It is observed that the irradiance estimates in the datasets have been gradually increasing at a rate of 0.019 kWh m−2 d−1 per year. The monthly variation in solar irradiance indicates that the meteorological conditions in the spring season dominate the annual solar insolation. In addition, the local distribution of solar irradiance is primarily affected by the geographical environment; higher solar insolation is observed in the southern part of Korea, but lower solar insolation is observed in the mountainous range in Korea. The annual capacity factor is the secondary output from the Korean solar irradiance datasets. The reliability of the estimate of this factor is proven by the high correlation coefficient of 0.912. Thus, in accordance with the results from the spatial distribution of solar irradiance, the southern part of Korea is an appropriate region for establishing solar power plants exhibiting a higher annual capacity factor than the other regions.

Funder

Korea Institute of Energy Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3