Recent Advances in Robust Design for Accelerated Failure Time Models with Type I Censoring

Author:

Rivas-López María J.ORCID,Martín-Martín RaúlORCID,García-Camacha Gutiérrez IreneORCID

Abstract

Many fields including clinical and manufacturing areas usually perform life-testing experiments and accelerated failure time models (AFT) play an essential role in these investigations. In these models the covariate causes an accelerant effect on the course of the event through the term named acceleration factor (AF). Despite the influence of this factor on the model, recent studies state that the form of AF is weakly or partially known in most real applications. In these cases, the classical optimal design theory may produce low efficient designs since they are highly model dependent. This work explores planning and techniques that can provide the best robust designs for AFT models with type I censoring when the form of the AF is misspecified, which is an issue little explored in the literature. Main idea is focused on considering the AF to vary over a neighbourhood of perturbation functions and assuming the mean square error matrix as the basis for measuring the design quality. A key result of this research was obtaining the asymptotic MSE matrix for type I censoring under the assumption of known variance regardless the selected failure time distribution. In order to illustrate the applicability of previous result to a study case, analytical characterizations and numerical approaches were developed to construct optimal robust designs under different contaminating scenarios for a failure time following a log-logistic distribution.

Funder

Ministry of Economy, Industry and Competitiveness

Ministerio de Ciencia e Innovación

Regional Government of Castile-La Mancha

Junta de Castilla y León

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3