Tauroursodeoxycholic Acid Enhances Osteogenic Differentiation through EGFR/p-Akt/CREB1 Pathway in Mesenchymal Stem Cells

Author:

Kang Hyojin1ORCID,Yang Sunsik2,Lee Jun1

Affiliation:

1. Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea

2. Bonecell Biotech Inc., 77 Dunsan-dong, Seo-gu, Daejeon 35233, Republic of Korea

Abstract

Background: Mesenchymal stem cells (MSCs) are pluripotent stromal cells that are among the most appealing candidates for regenerative medicine and may aid in the repair and regeneration of skeletal disorders through multiple mechanisms, including angiogenesis, differentiation, and response to inflammatory conditions. Tauroursodeoxycholic acid (TUDCA) has recently been used in various cell types as one of these drugs. The mechanism of osteogenic differentiation by TUDCA in hMSCs remains unknown. Methods: Cell proliferation was performed by the WST-1 method, and alkaline phosphatase activity and alizarin red-sulfate staining were used to confirm the osteogenic differentiation indicator. Expression of genes related to bone differentiation and specific genes related to signaling pathways was confirmed by quantitative real-time polymerase chain reaction. Results: We found that cell proliferation was higher as the concentration increased, and showed that the induction of osteogenic differentiation was significantly enhanced. We also show that osteogenic differentiation genes were upregulated, with the expression of the epidermal growth factor receptor (EGFR) and cAMP responsive element binding protein 1 (CREB1) being specifically high. To confirm the participation of the EGFR signaling pathway, the osteogenic differentiation index and expression of osteogenic differentiation genes were determined after using an EGFR inhibitor. As a result, EGFR expression was remarkably low, and that of CREB1, cyclin D1, and cyclin E1 was also significantly low. Conclusions: Therefore, we suggest that TUDCA-induced osteogenic differentiation of human MSCs is enhanced through the EGFR/p-Akt/CREB1 pathway.

Funder

National Research Foundation of Republic of Korea

Publisher

MDPI AG

Subject

General Medicine

Reference30 articles.

1. Potency of various types of stem cells and their transplantation;Srilatha;J. Stem Cell. Res. Ther.,2011

2. Mesenchymal stem cells (MSCs) as skeletal therapeutics—An update;Saeed;J. Biomed. Sci.,2016

3. Stem cells sources for intervertebral disc regeneration;Russo;World J. Stem Cells,2016

4. Mesenchymal stem cells and immunomodulation: Current status and future prospects;Gao;Cell. Death Dis.,2016

5. Stem cells for osteoarticular and vascular tissue engineering;Vinatier;Med. Sci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3