Functional Diversity of Novel Lectins with Unique Structural Features in Marine Animals

Author:

Hatakeyama Tomomitsu1,Unno Hideaki12

Affiliation:

1. Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan

2. Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan

Abstract

Due to their remarkable structural diversity, glycans play important roles as recognition molecules on cell surfaces of living organisms. Carbohydrates exist in numerous isomeric forms and can adopt diverse structures through various branching patterns. Despite their relatively small molecular weights, they exhibit extensive structural diversity. On the other hand, lectins, also known as carbohydrate-binding proteins, not only recognize and bind to the diverse structures of glycans but also induce various biological reactions based on structural differences. Initially discovered as hemagglutinins in plant seeds, lectins have been found to play significant roles in cell recognition processes in higher vertebrates. However, our understanding of lectins in marine animals, particularly marine invertebrates, remains limited. Recent studies have revealed that marine animals possess novel lectins with unique structures and glycan recognition mechanisms not observed in known lectins. Of particular interest is their role as pattern recognition molecules in the innate immune system, where they recognize the glycan structures of pathogens. Furthermore, lectins serve as toxins for self-defense against foreign enemies. Recent discoveries have identified various pore-forming proteins containing lectin domains in fish venoms and skins. These proteins utilize lectin domains to bind target cells, triggering oligomerization and pore formation in the cell membrane. These findings have spurred research into the new functions of lectins and lectin domains. In this review, we present recent findings on the diverse structures and functions of lectins in marine animals.

Publisher

MDPI AG

Subject

General Medicine

Reference95 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3