A Low-Carbon Collaborative Optimization Operation Method for a Two-Layer Dynamic Community Integrated Energy System

Author:

Wang Qiancheng1ORCID,Pen Haibo1ORCID,Chen Xiaolong1,Li Bin1,Zhang Peng1

Affiliation:

1. The School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China

Abstract

The traditional centralized optimization method encounters challenges in representing the interaction among multi-agents and cannot consider the interests of each agent. In traditional low-carbon scheduling, the fixed carbon quota trading price can easily cause arbitrage behavior of the trading subject, and the carbon reduction effect is poor. This paper proposes a two-layer dynamic community integrated energy system (CIES) low-carbon collaborative optimization operation method. Firstly, a multi-agent stage feedback carbon trading model is proposed, which calculates carbon trading costs in stages and introduces feedback factors to reduce carbon emissions indirectly. Secondly, a two-layer CIES low-carbon optimal scheduling model is constructed. The upper energy seller (ES) sets energy prices. The lower layer is the combined cooling, heating, and power (CCHP) system and load aggregator (LA), which is responsible for energy output and consumption. The energy supply and consumption are determined according to the ES energy price strategy, which reversely affects the energy quotation. Then, the non-dominated sorting genetic algorithm embedded with quadratic programming is utilized to solve the established scheduling model, which reduces the difficulty and improves the solving efficiency. Finally, the simulation results under the actual CIES example show that compared with the traditional centralized scheduling method, the total carbon emission of the proposed method is reduced by 16.34%, which can improve the income of each subject and make the energy supply lower carbon economy.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3