Affiliation:
1. School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
2. Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
Abstract
Addressing issues such as low localization accuracy, poor robustness, and long average localization time in pupil center localization algorithms, an improved YOLOv8 network-based pupil center localization algorithm is proposed. This algorithm incorporates a dual attention mechanism into the YOLOv8n backbone network, which simultaneously attends to global contextual information of input data while reducing dependence on specific regions. This improves the problem of difficult pupil localization detection due to occlusions such as eyelashes and eyelids, enhancing the model’s robustness. Additionally, atrous convolutions are introduced in the encoding section, which reduce the network model while improving the model’s detection speed. The use of the Focaler-IoU loss function, by focusing on different regression samples, can improve the performance of detectors in various detection tasks. The performance of the improved Yolov8n algorithm was 0.99971, 1, 0.99611, and 0.96495 in precision, recall, MAP50, and mAP50-95, respectively. Moreover, the improved YOLOv8n algorithm reduced the model parameters by 7.18% and the computational complexity by 10.06%, while enhancing the environmental anti-interference ability and robustness, and shortening the localization time, improving real-time detection.
Funder
Jilin Provincial Science and Technology Development Program Key R&D Project
Reference28 articles.
1. Tracking gaze and visual focus of attention of people involved in social interaction;Ba;IEEE Trans. Pattern. Anal. Mach. Intell,2018
2. Current Trends in Human Pupil Localization: A Review;Rathnayake;IEEE Access,2023
3. An effective iris segmentation scheme for noisy images;Jan;Biocybern. Biomed.,2020
4. Poulopoulos, N., and Psarakis, E. (2022, January 6–8). DeepPupil net: Deep residual network for precise pupil center localization. Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022), Setúbal, Portugal.
5. Accurate Eye Centre Localisation by Means of Gradient;Timm;Visapp,2011