1. Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence;Coyner;Ophthalmol. Sci.,2022
2. (2023, April 20). The Unreasonable Effectiveness of Data|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/4804817.
3. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D., and Uszkoreit, J. (2021). MLP-Mixer: An all-MLP Architecture for Vision. arXiv.
4. Ramos, L., and Subramanyam, J. (2021). Maverick* Research: Forget about Your Real Data—Synthetic Data Is the Future of AI, Gartner, Inc.. Available online: https://www.gartner.com/en/documents/4002912.
5. Alaa, A., Breugel, B.V., Saveliev, E.S., and van der Schaar, M. (2022, January 17–23). How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models. Proceedings of the 39th International Conference on Machine Learning, PMLR, Baltimore, MD, USA. Available online: https://proceedings.mlr.press/v162/alaa22a.html.