Abstract
Previous research showed that an Inertial Measurement Unit (IMU) on the anterior side of the shank can accurately measure the Shank-to-Vertical Angle (SVA), which is a clinically-used parameter to guide tuning of ankle-foot orthoses (AFOs). However, in this context it is specifically important that differences in the SVA are detected during the tuning process, i.e., when adjusting heel height. This study investigated the validity of the SVA as measured by an IMU and its responsiveness to changes in AFO-footwear combination (AFO-FC) heel height in persons with incomplete spinal cord injury (iSCI). Additionally, the effect of heel height on knee flexion-extension angle and internal moment was evaluated. Twelve persons with an iSCI walked with their own AFO-FC in three different conditions: (1) without a heel wedge (refHH), (2) with 5 mm heel wedge (lowHH) and (3) with 10 mm heel wedge (highHH). Walking was recorded by a single IMU on the anterior side of the shank and a 3D gait analysis (3DGA) simultaneously. To estimate validity, a paired t-test and intraclass correlation coefficient (ICC) between the SVAIMU and SVA3DGA were calculated for the refHH. A repeated measures ANOVA was performed to evaluate the differences between the heel heights. A good validity with a mean difference smaller than 1 and an ICC above 0.9 was found for the SVA during midstance phase and at midstance. Significant differences between the heel heights were found for changes in SVAIMU (p = 0.036) and knee moment (p = 0.020) during the midstance phase and in SVAIMU (p = 0.042) and SVA3DGA (p = 0.006) at midstance. Post-hoc analysis revealed a significant difference between the ref and high heel height condition for the SVAIMU (p = 0.005) and knee moment (p = 0.006) during the midstance phase and for the SVAIMU (p = 0.010) and SVA3DGA (p = 0.006) at the instant of midstance. The SVA measured with an IMU is valid and responsive to changing heel heights and equivalent to the gold standard 3DGA. The knee joint angle and knee joint moment showed concomitant changes compared to SVA as a result of changing heel height.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献