Multi-Objective Framework for Optimal Placement of Distributed Generations and Switches in Reconfigurable Distribution Networks: An Improved Particle Swarm Optimization Approach

Author:

Alanazi Abdulaziz1ORCID,Alanazi Tarek I.2ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 73222, Saudi Arabia

2. Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia

Abstract

Distribution network operators and planners face a significant challenge in optimizing planning and scheduling strategies to enhance distribution network efficiency. Using improved particle swarm optimization (IPSO), this paper presents an effective method for improving distribution system performance by concurrently deploying remote-controlled sectionalized switches, distributed generation (DG), and optimal network reconfiguration. The proposed optimization problem’s main objectives are to reduce switch costs, maximize reliability, reduce power losses, and enhance voltage profiles. An analytical reliability evaluation is proposed for DG-enhanced reconfigurable distribution systems, considering both switching-only and repairs and switching interruptions. The problem is formulated in the form of a mixed integer nonlinear programming problem, which is known as an NP-hard problem. To solve the problem effectively while improving conventional particle swarm optimization (PSO) exploration and exploitation capabilities, a novel chaotic inertia weight and crossover operation mechanism is developed here. It is demonstrated that IPSO can be applied to both single- and multi-objective optimization problems, where distribution systems’ optimization strategies are considered sequentially and simultaneously. Furthermore, IPSO’s effectiveness is validated and evaluated against well-known state-of-the-art metaheuristic techniques for optimizing IEEE 69-node distribution systems.

Funder

the Deanship of Scientific Research at Northern Border University, Arar, K.S.A.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3