Spatial and Temporal Change in Meteorological Drought in Gansu Province from 1969 to 2018 Based on REOF

Author:

Wang Yuxuan1,Deng Fan1,Cai Yongxiang12,Zhao Yi3

Affiliation:

1. School of Geosciences, Yangtze University, Wuhan 430100, China

2. Key Laboratory of Engineering Geophysical Prospecting and Detection of Chinese Geophysical Society, Wuhan 430100, China

3. Exploration Department of Huabei Oil Field Company, PetroChina, Renqiu 062552, China

Abstract

Meteorological drought is one of the most serious natural disasters, and its impact in arid and semi-arid areas is significant. In order to explore the temporal and spatial distribution of meteorological disasters in Gansu Province, we first calculated the standardized precipitation evapotranspiration index (SPEI) based on the monthly meteorological data from 1969 to 2018 and extracted the drought events through the theory of runs. Then, REOF rotation orthogonal decomposition was performed to divide the study area into five climatic subregions. With each subregion as the basic unit, the variation characteristics and evolution trends of drought events at different time scales were compared based on the B-G segmentation algorithm (BG-algorithm). Finally, a correlation analysis was conducted to explore the driving factors of drought events in each subregion. The main conclusions are as follows: (1) The cumulative duration of drought in the study area showed a slight increase trend (0.475 day/decade) and a 19-year main cycle. The drought intensity showed a trend of first easing and then intensifying, especially after 2000; the drought intensified significantly and showed a spatial trend of decreasing drought in the northwest and worsening drought in the southeast. (2) The cumulative contribution rate of the first five modes of REOF decomposition was 64.46%, and the study was divided into five arid subregions: the Hexi region, middle Hedong region, eastern Hedong region, Wushaoling region and western Hedong region. (3) The meteorological drought in the Hexi region has eased significantly since 1988. In the eastern, central and western parts of the Yellow River, drought intensification was observed to have occurred in different degrees (0.12/decade, 0.129/decade, and 0.072/decade). The meteorological drought in the Wuelyaling region has alleviated significantly with a watershed region formed between drought alleviation and drought intensification. (4) Seasonally, the eastern Hedong region showed a significant trend of drought in spring, but the opposite in autumn. The trend of climate drying was obvious in the spring and summer, rather than in autumn and winter. The spring drought trend is the most obvious in the middle of the Hedong region. (5) The meteorological drought in the study area was affected by local climatic factors and circulation factors, but there were significant differences in the responses of different arid subregions to these factors.

Funder

Key Laboratory of Engineering Geophysical Prospecting and Detection of Chinese Geophysical Society

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference46 articles.

1. Wilhite, D.A. (2002). Handbook of Weather, Climate, and Water: Atmospheric Chemistry, Hydrology, and Societal Impacts. Drought in the US Great Plains, Wiley.

2. Progresses and Challenges in Drought Assessment and Monitoring;Zhang;Adv. Earth Sci.,2011

3. Regional drought has a global impact;Sternberg;Nature,2011

4. Agriculture and drought;Grayson;Nature,2013

5. Drought under global warming: A review;Dai;Wiley Inter Discip. Rev. Clim. Chang.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3