Video-Based Stress Detection through Deep Learning

Author:

Zhang HuijunORCID,Feng Ling,Li Ningyun,Jin Zhanyu,Cao Lei

Abstract

Stress has become an increasingly serious problem in the current society, threatening mankind’s well-beings. With the ubiquitous deployment of video cameras in surroundings, detecting stress based on the contact-free camera sensors becomes a cost-effective and mass-reaching way without interference of artificial traits and factors. In this study, we leverage users’ facial expressions and action motions in the video and present a two-leveled stress detection network (TSDNet). TSDNet firstly learns face- and action-level representations separately, and then fuses the results through a stream weighted integrator with local and global attention for stress identification. To evaluate the performance of TSDNet, we constructed a video dataset containing 2092 labeled video clips, and the experimental results on the built dataset show that: (1) TSDNet outperformed the hand-crafted feature engineering approaches with detection accuracy 85.42% and F1-Score 85.28%, demonstrating the feasibility and effectiveness of using deep learning to analyze one’s face and action motions; and (2) considering both facial expressions and action motions could improve detection accuracy and F1-Score of that considering only face or action method by over 7%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress Detection in Videos using Machine Learning;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

2. Issues and Challenges in Detecting Mental Stress from Multimodal Data Using Machine Intelligence;SN Computer Science;2024-03-28

3. Multimodal depression detection using deep learning in the workplace;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

4. Revealing Neural Stress Patterns: Investigating the Efficacy of Eeg Recordings in a Targeted Dataset for Precise Stress Detection;2024

5. Reading Between the Heat;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3