Author:
Watson C.,Kargel Jeffrey,Tiruwa Babulal
Abstract
Topography derived using human-portable unmanned aerial vehicles (UAVs) and structure from motion photogrammetry offers an order of magnitude improvement in spatial resolution and uncertainty over small survey extents, compared to global digital elevation model (DEM) products, which are often the only available choice of DEMs in the high-mountain Himalaya. Access to fine-resolution topography in the high mountain Himalaya is essential to assess where flood and landslide events present a risk to populations and infrastructure. In this study, we compare the topography of UAV-derived DEMs, three open-access global DEM products, and the 8 m High Mountain Asia (HMA) DEMs (released in December 2017) and assess their suitability for landslide- and flood-related hazard assessments. We observed close similarity between UAV and HMA DEMs when comparing terrain elevation, river channel delineation, landside volume, and landslide-dammed lake area and volume. We demonstrate the use of fine-resolution topography in a flood-modelling scenario relating to landslide-dammed lakes that formed on the Marsyangdi River following the 2015 Gorkha earthquake. We outline a workflow for using UAVs in hazard assessments and disaster situations to generate fine-resolution topography and facilitate real-time decision-making capabilities, such as assessing landslide-dammed lakes, mass movement volumes, and flood risk.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献