UAV-Derived Himalayan Topography: Hazard Assessments and Comparison with Global DEM Products

Author:

Watson C.,Kargel Jeffrey,Tiruwa Babulal

Abstract

Topography derived using human-portable unmanned aerial vehicles (UAVs) and structure from motion photogrammetry offers an order of magnitude improvement in spatial resolution and uncertainty over small survey extents, compared to global digital elevation model (DEM) products, which are often the only available choice of DEMs in the high-mountain Himalaya. Access to fine-resolution topography in the high mountain Himalaya is essential to assess where flood and landslide events present a risk to populations and infrastructure. In this study, we compare the topography of UAV-derived DEMs, three open-access global DEM products, and the 8 m High Mountain Asia (HMA) DEMs (released in December 2017) and assess their suitability for landslide- and flood-related hazard assessments. We observed close similarity between UAV and HMA DEMs when comparing terrain elevation, river channel delineation, landside volume, and landslide-dammed lake area and volume. We demonstrate the use of fine-resolution topography in a flood-modelling scenario relating to landslide-dammed lakes that formed on the Marsyangdi River following the 2015 Gorkha earthquake. We outline a workflow for using UAVs in hazard assessments and disaster situations to generate fine-resolution topography and facilitate real-time decision-making capabilities, such as assessing landslide-dammed lakes, mass movement volumes, and flood risk.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3