A UAV-Based Sensor System for Measuring Land Surface Albedo: Tested over a Boreal Peatland Ecosystem

Author:

Canisius Francis,Wang Shusen,Croft Holly,Leblanc Sylvain G.,Russell Hazen A.J.,Chen Jing,Wang Rong

Abstract

A multiple sensor payload for a multi-rotor based UAV platform was developed and tested for measuring land surface albedo and spectral measurements at user-defined spatial, temporal, and spectral resolutions. The system includes a Matrice 600 UAV with an RGB camera and a set of four downward pointing radiation sensors including a pyranometer, quantum sensor, and VIS and NIR spectrometers, measuring surface reflected radiation. A companion ground unit consisting of a second set of identical sensors simultaneously measure downwelling radiation. The reflected and downwelling radiation measured by the four sensors are used for calculating albedo for the total shortwave broadband, visible band and any narrowband at a 1.5 nm spectral resolution within the range of 350–1100 nm. The UAV-derived albedo was compared with those derived from Landsat 8 and Sentinel-2 satellite observations. Results show the agreement between total shortwave albedo from UAV pyranometer and Landsat 8 (R2 = 0.73) and Sentinel-2 (R2 = 0.68). Further, total shortwave albedo was estimated from spectral measurements and compared with the satellite-derived albedo. This UAV-based sensor system promises to provide high-resolution multi-sensors data acquisition. It also provides maximal flexibility for data collection at low cost with minimal atmosphere influence, minimal site disturbance, flexibility in measurement planning, and ease of access to study sites (e.g., wetlands) in contrast with traditional data collection methods.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3