Affiliation:
1. Korea Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
2. Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
Abstract
The vagus nerve regulates metabolic homeostasis and mediates gut–brain communication. We hypothesized that vagus nerve dysfunction, induced by truncated vagotomy (VGX) or carotid artery occlusion (AO), would disrupt gut–brain communication and exacerbate metabolic dysregulation, neuroinflammation, and cognitive impairment. This study aimed to test the hypothesis in gerbils fed a high-fat diet. The gerbils were divided into four groups: AO with VGX (AO_VGX), AO without VGX (AO_NVGX), no AO with VGX (NAO_VGX), and no AO without VGX (NAO_NVGX). After 5 weeks on a high-fat diet, the neuronal cell death, neurological severity, hippocampal lipids and inflammation, energy/glucose metabolism, intestinal morphology, and fecal microbiome composition were assessed. AO and VGX increased the neuronal cell death and neurological severity scores associated with increased hippocampal lipid profiles and lipid peroxidation, as well as changes in the inflammatory cytokine expression and brain-derived neurotrophic factor (BDNF) levels. AO and VGX also increased the body weight, visceral fat mass, and insulin resistance and decreased the skeletal muscle mass. The intestinal morphology and microbiome composition were altered, with an increase in the abundance of Bifidobacterium and a decrease in Akkermansia and Ruminococcus. Microbial metagenome functions were also impacted, including glutamatergic synaptic activity, glycogen synthesis, and amino acid biosynthesis. Interestingly, the effects of VGX were not significantly additive with AO, suggesting that AO inhibited the vagus nerve activity, partly offsetting the effects of VGX. In conclusion, AO and VGX exacerbated the dysregulation of energy, glucose, and lipid metabolism, neuroinflammation, and memory deficits, potentially through the modulation of the gut–brain axis. Targeting the gut–brain axis by inhibiting vagus nerve suppression represents a potential therapeutic strategy for ischemic stroke.
Funder
National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT