Inner Structure of the Lateral Geniculate Complex of Adult and Newborn Acomys cahirinus

Author:

Merkulyeva Natalia1,Mikhalkin Aleksandr1,Veshchitskii Aleksandr1ORCID

Affiliation:

1. Neuromorphology Laboratory, Pavlov Institute of Physiology of Russian Academy of Sciences, St. Petersburg 199034, Russia

Abstract

Acomys cahirinus is a unique Rodentia species with several distinctive physiological traits, such as precocial development and remarkable regenerative abilities. These characteristics render A. cahirinus increasingly valuable for regenerative and developmental physiology studies. Despite this, the structure and postnatal development of the central nervous system in A. cahirinus have been inadequately explored, with only sporadic data available. This study is the first in a series of papers addressing these gaps. Our first objective was to characterize the structure of the main visual thalamic region, the lateral geniculate complex, using several neuronal markers (including Ca2+-binding proteins, glutamic acid decarboxylase enzyme, and non-phosphorylated domains of heavy-chain neurofilaments) to label populations of principal neurons and interneurons in adult and newborn A. cahirinus. As typically found in other rodents, we identified three subdivisions in the geniculate complex: the dorsal and ventral lateral geniculate nuclei (LGNd and LGNv) and the intergeniculate leaflet (IGL). Additionally, we characterized internal diversity in the LGN nuclei. The “shell” and “core” regions of the LGNd were identified using calretinin in adults and newborns. In adults, the inner and outer parts of the LGNv were identified using calbindin, calretinin, parvalbumin, GAD67, and SMI-32, whereas in newborns, calretinin and SMI-32 were employed for this purpose. Our findings revealed more pronounced developmental changes in LGNd compared to LGNv and IGL, suggesting that LGNd is less mature at birth and more influenced by visual experience.

Funder

Pavlov Institute of Physiology Russian Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3