Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features

Author:

Wang Zheng,Ding Jianli,Zhang Zipeng

Abstract

The soil organic matter (SOM) content is a key factor affecting the function and health of soil ecosystems. For measurements of land reclamation and soil fertility, SOM monitoring using visible and near-infrared spectroscopy (Vis-NIR) is one approach to quantifying soil quality, and Vis-NIR is important for monitoring the SOM content in a broad and nondestructive manner. To investigate the influence of environmental factors and Vis-NIR spectroscopy in estimating SOM, 249 soil samples were collected from the Werigan–Kuqa oasis in Xinjiang, China, and their spectral reflectance, SOM content and soil salinity were measured. To classify and improve the prediction accuracy, we also take into account the soil salinity content as a variable indicator. Relevant environmental variables were extracted using remote sensing datasets (land-use/land-cover (LULC), digital elevation model (DEM), World Reference Base for Soil Resources (WRB), and soil texture). On the basis of Savitzky–Golay (S-G) smoothing and first derivative (FD) preprocessing of the original spectrum, three clusters were obtained by K-means clustering through the use of Vis-NIR and used as spectral classification variables. Using Vis-NIR as Model 1, Vis-NIR combined with spectral classification as Model 2, environmental variables as Model 3, and the combination of all the above variables (Vis-NIR, spectral classification, environmental variables, and soil salinity) as Model 4, a SOM content estimation model was constructed using partial least squares regression (PLSR). Using the 249 soil samples, the modeling set contained 166 samples and the validation set contained 83 samples. The results showed that Model 2 (validation r2 = 0.78) was better than Model 1 (validation r2 = 0.76). The prediction accuracy for Model 4 (validation r2 = 0.85) was better than Model 2 (validation r2 = 0.78). Among these, Model 3 was the worst (validation r2 = 0.39). Therefore, the combination of environmental variables with Vis-NIR spectroscopy to estimate SOM content is an important method and has important implications for improving the accuracy of SOM predictions in arid regions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Soil Organic Carbon Management and Farmland Organic Matter Balance Method;Chin. Agric. Sci.,2020

2. Combination of efficient signal pre-processing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra;Spectrochim. Acta Part A Mol. Biomol. Spectrosc.,2020

3. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments;Geoderma.,2014

4. Field in Situ Spectral Inversion of Cotton Organic Matter Based on Soil Water Removal Algorithm;Spectrosc. Spectr. Anal.,2022

5. Spectral Characteristics of Oasis Soil in Arid Area Based on Harmonic Analysis Algorithm;Acta Opt. Sin.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3