Effects of Acute Exposure to Virtually Generated Slip Hazards during Overground Walking

Author:

Derby Hunter1,Conner Nathan O.1ORCID,Hull Jacob M.1,Hagan Faith1,Barfield Sally1,Stewart Timothy2,Jones J. Adam2,Knight Adam C.1ORCID,Chander Harish1ORCID

Affiliation:

1. Neuromechanics Laboratory, Mississippi State University, Mississippi State, MS 39762, USA

2. High Fidelity Virtual Environments Lab (Hi5 Lab), Mississippi State University, Mississippi State, MS 39762, USA

Abstract

Postural instability and the inability to regain balance during slip-induced events are the leading causes of falls on the same level in occupational environments. Virtual reality (VR) provides the potential to be immersed in a realistic environment, exposing themselves to fall-risk hazards without the risk of injury real-world exposure may cause. Therefore, the purpose of this study was to compare the lower extremity joint kinematics of the slipping leg during real and virtually generated slip hazards. A secondary purpose was to investigate dynamic postural stability following acute exposure to real (REAL) and virtual (VR) environmental conditions. A total of 14 healthy participants’ (7 men, 7 women; age: 23.46 ± 3.31 years; height: 173.85 ± 8.48 cm; mass: 82.19 ± 11.41 kg; shoe size (men’s): 9.03 ± 2.71) knee and ankle joint kinematics were compared during exposure to both REAL and VR environments. Participants then completed a series of Timed Up-and-Go (TUG) variations (standard, cognitive, manual) at the beginning and the end of exposure to each environment. TUG-C involved backwards counting and TUG-M involved walking with an anterior load. Environmental exposure was selected in a counterbalanced order to prevent an order effect. Knee and ankle joint kinematics were analyzed separately using a 2 × 3 repeated measure ANOVA to compare environments as well as gait types at an alpha level of 0.05. TUG variations were also analyzed separately using a 3 × 3 repeated-measures ANOVA to compare TUG variations and environment. No significant differences were observed for knee or ankle joint kinematics between environments or gait types. There were also no significant interactions between environments and gait types. However, significant differences were observed for TUG-C following VR environmental conditions (p = 0.027). Post hoc comparisons revealed significantly lower times for TUG-C following VR exposure (p = 0.029). No significance was observed for TUG-S or TUG-M. Current findings suggest the potential effectiveness of VR as a means of fall prevention training for occupational populations based on improved TUG-C and similar lower extremity joint kinematics in REAL and VR conditions.

Funder

National Institute of Occupational Safety and Health

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3