Multidimensional Data Analysis for Enhancing In-Depth Knowledge on the Characteristics of Science and Technology Parks

Author:

Francés Olga1ORCID,Abreu-Salas José1ORCID,Fernández Javi1,Gutiérrez Yoan1,Palomar Manuel1

Affiliation:

1. Research Group on Natural Language Processing and Information Systems, Department of Software and Computing Systems, University of Alicante, 03080 Alicante, Spain

Abstract

The role played by science and technology parks (STPs) in technology transfer, industrial innovation, and economic growth is examined in this paper. The accurate monitoring of their evolution and impact is hindered by the lack of uniformity in STP models or goals, and the scarcity of high-quality datasets. This work uses existing terminologies, definitions, and core features of STPs to conduct a multidimensional data analysis that explores and evaluates the 21 core features which describe the key internal factors of an STP. The core features are gathered from a reliable and updatable dataset of Spanish STPs. The methodological framework can be replicated for other STP contexts and is based on descriptive techniques and machine-learning tools. The results of the study provide an overview of the general situation of STPs in Spain, validate the existence and characteristics of three types of STPs, and identify the typical features of STPs. Moreover, the prototype STP can be used as a benchmark so that other STPs can identify the features that need to be improved. Finally, this work makes it possible to carry out classifications of STPs, in addition to prediction and decision making for innovation ecosystems.

Funder

Generalitat Valenciana

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Los Parques Científicos como espacios multidisciplinares;Sanz;Encuentros Multidiscip.,2011

2. Francés, O., Fernández, J., Abreu, J., Gutiérrez, Y., and Palomar, M. (Data Knowl. Eng., 2023). How to build a standardised dataset for Science and Technology Parks from heterogenous sources, Data Knowl. Eng., under review.

3. Francés, O., Abreu, J., Gutiérrez, Y., Fernández, J., and Palomar, M. (2023, October 31). PCT Observer Tablero de Parques Científicos/Tecnológicos. Available online: https://rua.ua.es/dspace/handle/10045/122837.

4. The nonparametric Behrens-Fisher problem: Asymptotic theory and a small-sample approximation;Brunner;Biom. J. J. Math. Methods Biosci.,2000

5. McArdle, J.J. (2013). Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences, Routledge.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3