Abstract
This study proposed a feature-based decision method for the mapping of rice cultivation by using the time-series C-band synthetic aperture radar (SAR) data provided by Sentinel-1A. In this study, a model related to crop growth was first established. The model was developed based on a cubic polynomial function which was fitted by the complete time-series SAR backscatters during the rice growing season. From the developed model, five rice growth-related features were introduced, including backscatter difference (BD), time interval (TI) between vegetative growth and maturity stages, backscatter variation rate (BVR), average normalized backscatter (ANB) and maximum backscatter (MB). Then, a decision method based on the combination of the five extracted features was proposed to improve the rice detection accuracy. In order to verify the detection performance of the proposed method, the test data set of this study consisted of 50,000 rice and non-rice fields which were randomly sampled from a research area in Taiwan for simulation verification. From the experimental results, the proposed method can improve overall accuracy in rice detection by 6% compared with the method using feature BD. Furthermore, the rice detection efficiency of the proposed method was compared with other four classifiers, including decision tree (DT), support vector machine (SVM), K-nearest neighbor (KNN) and quadratic discriminant analysis (QDA). The experimental results show that the proposed method has better rice detection accuracy than the other four classifiers, with an overall accuracy of 91.9%. This accuracy is 3% higher than fine SVM, which performs best among the other four classifiers. In addition, the consistency and effectiveness of the proposed method in rice detection have been verified for different years and studied regions.
Subject
General Earth and Planetary Sciences
Reference60 articles.
1. Rice by the numbers: A good grain
2. Rice and Climate Change: Significance for Food Security and Vulnerability;Mohanty,2014
3. FAO Rice Market Monitorhttp://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/
4. The future of rice production and consumption;Kubo;J. Food Distrib. Res.,2004
5. Photosynthate allocations in rice plants: Food production or atmospheric methane?
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献