Geothermal Heat Pumps for Slurry Cooling and Farm Heating: Impact and Carbon Footprint Reduction in Pig Farms

Author:

Blázquez Cristina SáezORCID,Borge-Diez DavidORCID,Nieto Ignacio MartínORCID,Maté-González Miguel ÁngelORCID,Martín Arturo FarfánORCID,González-Aguilera DiegoORCID

Abstract

The pig farm sector has been developing rapidly over recent decades, leading to an increase in the production of slurry and associated environmental impacts. Breeding farms require the maintenance of adequate indoor thermal environments, resulting in high energy demands that are frequently met by fossil fuels and electricity. Farm heating systems and the storage of slurry constitute considerable sources of polluting gases. There is thus a need to highlight the advantages that new green heating solutions can offer to reduce the global environmental impact of pig farming. This research presents an overview of alternative pig farm slurry technology, using geothermal heat pumps, which reduces the harmful effects of slurry and improves the energy behavior of farms. The results reflect the environmental benefits of this solution in terms of reducing carbon and hydric footprints. Reducing the temperature of slurry with the geothermal heat pump of the system also reduces the annual amount of greenhouse gases and ammonia emissions, and, via the heat pump, slurry heat is used for installation heating. Annual emissions of CO2e could be reduced by more than half, and ammonia emissions could also experience a significant reduction if the slurry technology is installed. Additional advantages confirm the positive impact that the expansion of this renewable technology could have on the global pig farm sector.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3