Physiological Effects of Low Salinity Exposure on Bottlenose Dolphins (Tursiops truncatus)

Author:

McClain Abby M.ORCID,Daniels Risa,Gomez Forrest M.,Ridgway Sam H.ORCID,Takeshita Ryan,Jensen Eric D.,Smith Cynthia R.

Abstract

Bottlenose dolphins (Tursiops truncatus) have a worldwide distribution in temperate and tropical waters and often inhabit estuarine environments, indicating their ability to maintain homeostasis in low salinity for limited periods of time. Epidermal and biochemical changes associated with low salinity exposure have been documented in stranded bottlenose dolphins; however, these animals are often found severely debilitated or deceased and in poor condition. Dolphins in the U.S. Navy Marine Mammal Program travel globally, navigating varied environments comparable to those in which free-ranging dolphins are observed. A retrospective analysis was performed of medical records from 46 Navy dolphins and blood samples from 43 Navy dolphins exposed to a variety of salinity levels for different durations over 43 years (from 1967–2010). Blood values from samples collected during low salinity environmental exposure (salinity ranging from 0–30 parts per thousand (ppt) were compared to samples collected while those same animals were in a seawater environment (31–35 ppt). Epidermal changes associated with low salinity exposure were also assessed. Significant decreases in serum sodium, chloride, and calculated serum osmolality and significant increases in blood urea nitrogen and aldosterone were observed in blood samples collected during low salinity exposure. Epidermal changes were observed in 35% of the animals that spent time in low salinity waters. The prevalence of epidermal changes was inversely proportional to the level of salinity to which the animals were exposed. Future work is necessary to fully comprehend the impacts of low salinity exposure in bottlenose dolphins, but the physiological changes observed in this study will help improve our understanding of the upper limit of duration and the lower limit of salinity in which a bottlenose dolphin can maintain homeostasis.

Publisher

MDPI AG

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3