The Influence of Snow Cover Variability on the Runoff in Syr Darya Headwater Catchments between 2000 and 2022 Based on the Analysis of Remote Sensing Time Series

Author:

Vydra Clara1ORCID,Dietz Andreas J.2ORCID,Roessler Sebastian2ORCID,Conrad Christopher1ORCID

Affiliation:

1. Department of Geoecology, Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany

2. German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Muenchener Strasse 20, 82234 Wessling, Germany

Abstract

Climate change is affecting the snow cover conditions on a global scale, leading to changes in the extent and duration of snow cover as well as variations in the start and end of snow cover seasons. These changes can have a paramount impact on runoff and water availability, especially in catchments that are characterized by nival runoff regimes, e.g., the Syr Darya in Central Asia. This time series analyses of daily MODIS snow cover products and in situ data from hydrological stations for the time series from 2000 through 2022 reveal the influences of changing snow cover on the runoff regime. All catchments showed a decrease in spring snow cover duration of −0.53 to −0.73 days per year over the 22-year period. Catchments located farther west are generally characterized by longer snow cover duration and experience a stronger decreasing trend. Runoff timing was found to be influenced by late winter and spring snow cover duration, pointing towards earlier snowmelt in most of the regions, which affects the runoff in some tributaries of the river. The results of this study indicate that the decreasing snow cover duration trends lead to an earlier runoff, which demands more coordinated water resource management in the Syr Darya catchment. Further research is recommended to understand the implications of snow cover dynamics on water resources in Central Asia, crucial for agriculture and hydropower production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3