Propagating Particle Tracking Uncertainty Defined by Fuzzy Numbers in Spatially Variable Velocity Fields

Author:

Blanken Hauke12ORCID,Valeo Caterina2ORCID,Hannah Charles G.1,Khan Usman T.3

Affiliation:

1. Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada

2. Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada

3. Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada

Abstract

Accurate prediction of the trajectories of material drifting on the ocean surface is critical for risk assessment and responses to environmental emergencies. Prediction of these trajectories is subject to uncertainty arising from a number of sources, with a primary source being uncertainty in the modelled ocean surface currents and winds used as input to the trajectory model. This article presents a fuzzy number-based algorithm for propagating uncertainty through a particle tracking scheme in a time- and space-varying velocity field. The performance of the algorithm was tested by applying it to idealized, analytical velocity fields and scoring the results against the analytical solution. Both epistemic and aleatoric uncertainty were considered and combined using a fractional Brownian motion model for temporal autocorrelation of the uncertainty. In the evaluation of the algorithm, sensitivity was quantified with respect to parameters such as timestep size, resolution of the forcing velocity field, spatial and temporal gradients in the forcing, and resolution of the applied uncertainty. Parameter values optimizing uncertainty representation and computational cost were identified. The applied uncertainty was found to evolve in agreement with classical relative dispersion relationships.

Funder

Government of Canada’s Oceans Protection Plan

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3