Research on Aerodynamic Characteristics of a Ducted Propeller Hovering near the Water Surface Based on a Lattice Boltzmann Method

Author:

Zhao Yifeng123,Geng Lingbo12,Yang Yi12,Hu Zhiqiang12

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Water–air cross-domain vehicles (CDVs) are capable of both flight and underwater navigation, showing broad prospects in marine science, such as underwater observation, disaster response, and rescue operations. It is crucial to investigate the dynamic performance of CDVs hovering above water surfaces to enhance safety and stability. In this study, the performance of a CDV’s ducted propeller hovering at various heights above a water surface was analyzed via computational fluid dynamic (CFD) simulations using the lattice Boltzmann method (LBM) and thrust tests. The results indicate that the air–water mixture formed by the wake of the propeller impacting the water surface is sucked in by the duct, causing the propeller to enter an unstable vortex ring state. At the same rotation speed in the air, the thrust of the propeller system decreases and the required power increases. With an increase in the height of the propeller above the water surface, the thrust and power return to normal. Furthermore, a numerical model was proposed to express the correlation among thrust, propeller rotation speed, and distance from the water surface. This study establishes a foundation for the dynamic modeling of CDVs and can be utilized by other related studies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3