Tide-Induced Upwelling and Its Three-Dimensional Balance of the Vertical Component of Vorticity in the Wider Area of the Bohai Strait

Author:

Xu Yinfeng12ORCID,Liu Xiaohui23ORCID,Zhou Feng24ORCID,Chen Xueen1ORCID,Ye Ruijie24,Chen Dake123

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China

2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

4. Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan 316000, China

Abstract

Upwelling is a widespread phenomenon in the ocean and plays key roles in the marine environment, marine fishery and air–sea carbon exchange. In coastal regions, the upwelling is usually modulated by tides and complex topography, but the dynamical mechanism is still unclear and yet to be quantified. In this study, a three-dimensional (3D) regional ocean model is used to investigate tide-induced upwelling and its mechanisms quantitatively in the mouth of a semi-closed bay, the Bohai Strait, which is a tide-dominated coastal region. The results show that the upwelling mainly occurs near the tidal front in the north of the Laotieshan Channel and the southern region of the front, with the most active upwelling existing off promontories and small islands. Numerical sensitivity experiments indicate that the upwelling in the study area is mainly caused by tides, accounting for approximately 86% of the total. The 3D balance of the vertical component of the vorticity based on the model results quantifies the dynamic processes of the upwelling and reveals that tides induce the upwelling through tidal mixing and nonlinear effects. In the tidal front zone, the upwelling is mainly caused by baroclinic processes related to tidal mixing. Off promontories and small islands, we first reveal that the upwelling is driven by both the tidal mixing and nonlinear effect related to centrifugal force rather than just one of the two mechanisms, and the latter plays a dominant role in producing the upwelling. The strong nonlinear effect is attributed to the periodic movement of barotropic tidal currents rather than the mean flow.

Funder

Zhejiang Provincial Ten Thousand Talents Plan

Key R&D Program of Zhejiang Province

National Program on Global Change and Air–Sea Interaction

Zhejiang Provincial Natural Science Foundation of China

Scientific Research Fund of the Second Institute of Oceanography, MNR

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3