Author:
Fotouhi Azade,Ding Ming,Hassan Mahbub
Abstract
In this paper, we address the application of the flying Drone Base Stations (DBS) in order to improve the network performance. Given the high degrees of freedom of a DBS, it can change its position and adapt its trajectory according to the users movements and the target environment. A two-hop communication model, between an end-user and a macrocell through a DBS, is studied in this work. We propose Q-learning and Deep Q-learning based solutions to optimize the drone’s trajectory. Simulation results show that, by employing our proposed models, the drone can autonomously fly and adapts its mobility according to the users’ movements. Additionally, the Deep Q-learning model outperforms the Q-learning model and can be applied in more complex environments.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献