Modeling of Gate Stack Patterning for Advanced Technology Nodes: A Review

Author:

Klemenschits Xaver,Selberherr Siegfried,Filipovic LadoORCID

Abstract

Semiconductor device dimensions have been decreasing steadily over the past several decades, generating the need to overcome fundamental limitations of both the materials they are made of and the fabrication techniques used to build them. Modern metal gates are no longer a simple polysilicon layer, but rather consist of a stack of several different materials, often requiring multiple processing steps each, to obtain the characteristics needed for stable operation. In order to better understand the underlying mechanics and predict the potential of new methods and materials, technology computer aided design has become increasingly important. This review will discuss the fundamental methods, used to describe expected topology changes, and their respective benefits and limitations. In particular, common techniques used for effective modeling of the transport of molecular entities using numerical particle ray tracing in the feature scale region will be reviewed, taking into account the limitations they impose on chemical modeling. The modeling of surface chemistries and recent advances therein, which have enabled the identification of dominant etch mechanisms and the development of sophisticated chemical models, is further presented. Finally, recent advances in the modeling of gate stack pattering using advanced geometries in the feature scale are discussed, taking note of the underlying methods and their limitations, which still need to be overcome and are actively investigated.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3