Comparative Study on UV Degradation of Black Chinese Lacquers with Different Additives

Author:

Liu Wenjia12,Liu Xinyou123ORCID,Lv Jiufang12

Affiliation:

1. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

2. College of Furnishing and Industrial Design, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China

3. Faculty of Furniture Design and Wood Engineering, Transilvania University of Brasov, 500036 Brasov, Romania

Abstract

This study investigates the UV degradation of black Chinese lacquer by incorporating carbon black and ferrous hydroxide as additives. The purpose of this research is to understand the effects of these additives on the degradation behavior of the lacquer film. Different concentrations of carbon black powder (1%, 3%, and 5%) and Fe(OH)2 (10%, 20%, and 30%) were added to the lacquer following traditional techniques. The main methods employed for analysis were gloss loss measurement, color change assessment, SEM imaging, FTIR spectroscopy, and XPS analysis. The results demonstrate a significant decrease in gloss levels and an increase in lightness values with increasing ultraviolet exposure time. SEM images reveal the formation of cracks in the lacquer film. FTIR analysis indicates oxidation of the urushiol side chain and an increase in oxidation products. The infrared difference spectrum highlights the differences between the additives, with Fe(OH)2 showing a lower impact on the spectra compared to carbon black. XPS analysis confirms the oxidation of the C-H functional group and the presence of C-O-C and C-OH groups. In conclusion, this study sheds light on the influence of carbon black and ferrous hydroxide additives on the UV degradation of black Chinese lacquer and suggests the protective effect of Fe(OH)2 against UV aging. These findings contribute to a better understanding of the degradation mechanisms and provide insights for improving the UV resistance of Chinese lacquer coatings. Further research can explore alternative additives and optimization strategies to mitigate UV-induced degradation.

Funder

National Key R&D Program of China

Priority Academic Program Development (PAPD) of Jiangsu Province, China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3