Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches (Periplaneta americana) and Termites

Author:

Asad Khushbakht1,Shams Sumaira1,Ibáñez-Arancibia Eliana234ORCID,De los Ríos-Escalante Patricio R.45ORCID,Badshah Farhad16ORCID,Ahmad Farooq1,Khan Muhammad Salman1ORCID,Khan Asar1ORCID

Affiliation:

1. Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

2. PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco 4780000, Chile

3. Laboratory of Engineering, Biotechnology and Applied Biochemistry—LIBBA, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco 4780000, Chile

4. Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile

5. Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile

6. State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

The chitin and chitosan biopolymers are extremely valuable because of their numerous industrial and pharmacological uses. Chitin and chitosan were extracted from the exoskeleton of Periplaneta americana (cockroaches) and termites using various acid and alkali techniques. The extraction process involves an initial demineralization step, during which integument dry powder was subjected to 500 mL (2.07 mol/L) of concentrated HCl at 100 degrees Celsius for 30 min, followed by meticulous rinsing with distilled water to restore the pH to its baseline. Deproteinization was conducted at 80 degrees Celsius using 500 mL (1 mol/L) of NaOH solution, which was repeated for 24 h. A total of 250 mL (0.06 mol/L) of NaOH was added at 100 degrees Celsius for 4 h to obtain chitosan, followed by extensive washing and subsequent drying. FTIR analysis was used to identify the functional groups in Periplaneta americana and termites. The crystallinity of these biopolymers, which have a face-centered cubic structure, was determined by X-ray diffraction analysis. This study assessed the analgesic properties of chitin and chitosan via an acetic-acid-induced writhing test in mice, revealing a significant reduction in writhing behavior following the chitin and chitosan extract. Notably, chitin exhibits the highest degree of analgesic activity compared to chitosan. Both chitin and chitosan show anti-inflammatory effects, with chitosan absorbing proton ions at sites of inflammation, while chitin effectively inhibits ear edema and elicits an analgesic response in mice. Furthermore, the present study revealed antipyretic activity, with termite chitin demonstrating the most significant effect at a concentration of 500 µL/mL, followed by chitosan and chitin at 100 µL/mL. These findings indicate the potential of using chitin and chitosan derived from termites and Periplaneta americana as natural anti-inflammatory compounds, implying prospective uses in anti-inflammatory, antipyretic, and analgesic capabilities.

Funder

MECESUP UCT 0804 project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3