Effect of Two-Stage Cooling on the Microstructure and Tribological Properties of Steel–Copper Bimetals

Author:

Kang Yuanyuan,Zhang Guowei,Wang Zhaojie,Xu Hong,Wan An

Abstract

In this paper, the solid–liquid composite method is used to prepare the steel–copper bimetal sample through two-stage cooling process (forced air cooling and oil cooling). The relationship between the different microstructures and friction properties of the bimetal copper layer is clarified. The results show that: the friction and wear parameters are 250 N, the speed is 1500 r/min (3.86 m/s), the friction coefficient fluctuates in the range of 0.06–0.1, and the lowest point is 0.06 at 700 °C. The microstructure of the copper layer was α-Cu, δ, Cu3P, and Pb phases, and Pb was free between α-Cu dendrites. When the solidification temperature is 900 °C, the secondary dendrite of α-Cu develops. With the decrease temperature, the growth of primary and secondary dendrites gradually tends to balance at 700 °C. During the wear process, Pb forms a self-lubricating film uniformly distributed on the surface of α-Cu, and the Cu3P and δ phases are distributed in the wear mark to increase α-Cu wear resistance.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3