A Hybrid Integration Method Based on SMC-PHD-TBD for Multiple High-Speed and Highly Maneuverable Targets in Ubiquitous Radar

Author:

Chen Zebin1,Peng Xiangyu2ORCID,Yang Junyao1,Zhong Zhanming1,Song Qiang1ORCID,Zhang Yue1

Affiliation:

1. School of Electronic and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, China

2. Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China

Abstract

Based on the characteristic of ubiquitous radar emitting low-gain wide beam, a method of long-time coherent integration (LTCI) is required to enhance target detection capability. However, high-speed and highly maneuverable targets can cause Doppler frequency migration (DFM), range migration (RM), and velocity ambiguity (VA), severely degrading the performance of LTCI. Additionally, the number of targets is unknown and variable, and the presence of clutter further complicates the target tracking problem. To address these challenges, we propose a hybrid integration method to achieve joint detection and estimation of multiple high-speed, and highly maneuverable targets. Firstly, we compensate for first-order RM using the keystone transform (KT) and generate corresponding sub-range-Doppler (SRD) planes with different folding factors to achieve VA compensation. These SRD planes are then stitched together to form an extended range-Doppler (ERD) plane, which covers a broader velocity range. Secondly, during the track-before-detect (TBD) process, tracking is performed directly on the ERD plane. We use the sequential Monte Carlo (SMC) approximation of the probability hypothesis density (PHD) to propagate multi-target states. Additionally, we propose an amplitude-based adaptive prior distribution method and a line spread model (LSM) observation model to compensate for DFM. Since the acceleration of the target is included in the particle state, using particles to search for DFM does not increase the computational load. To address the issue of misclassifying mirror targets as real targets in the SRD plane, we propose a particle space projection method. By stacking the SRD planes to create a folding range-Doppler (FRD) space, particles are projected along the folding factor dimension, and then, the particles are clustered to eliminate the influence of the mirror targets. Finally, through simulation experiments, the superiority of the LSM for targets with acceleration was demonstrated. In comparative experiments, the proposed method showed superior performance and robustness compared to traditional methods, achieving a balance between performance and computational efficiency. Furthermore, the proposed method’s capability to detect and track multiple high-speed and highly maneuverable targets was validated using actual data from a ubiquitous radar system.

Funder

National Natural Science Foundation of China

The Science and Technology Planning Project of Key Laboratory of Advanced IntelliSense Technology, Guangdong Science and Technology Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3