Rational Design of High-Performance Hemithioindigo-Based Photoswitchable AIE Photosensitizer and Enabling Reversible Control Singlet Oxygen Generation

Author:

Wang Junjie1,Wei Jianshuang1,Leng Yuehong1,Dai Yanfeng2,Xie Changqiang2,Zhang Zhihong12,Zhu Mingqiang23,Peng Xingzhou2

Affiliation:

1. Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

2. Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China

3. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

A photosensitizer furnishing with reversible control singlet oxygen generation (1O2) is highly desirable for precise photodynamic therapy (PDT), lessening non-specific harm to healthy tissues. Here, a novel photoswitchable aggregation-induced emission (AIE) photosensitizer based on a triarylamine (TPA)-modified hemithioindigo (HTI), 6Br-HTI-TPA-OMe, was rationally designed. The triarylamine AIE photosensitizing moiety and HTI switch unit were covalently linked in one molecule, permitting reversible regulation of 1O2 production. The photophysical evaluations revealed that 6Br-HTI-TPA-OMe possessed excellent AIE properties and Z/E photoswitch performance in different solvents. Additionally, the amphiphilic phospholipid-fabricated nanoparticles (NPs) also exhibited photochromic behavior in water. The Z-NPs initiated the generation of 1O2 upon 520 nm light-emitting diode (LED) irradiation, but after switching to E-NPs, the generation of 1O2 was inhibited by the competitive energy transfer, suggesting that reversible Z/E isomerization could photocontrol 1O2 generation. The in vitro anti-tumor experiment verified that the 6Br-HTI-TPA-OMe can act as a photoswitchable AIE photosensitizer. This is the first report on the photoswitchable AIE photosensitizer of HTI-based molecules, to the best of our knowledge.

Funder

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City

Open Project Program of Wuhan National Laboratory for Optoelectronics

Hainan University Scientific Research Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3