Experimental Investigations and Effect of Nano-Powder-Mixed EDM Variables on Performance Measures of Nitinol SMA

Author:

Chaudhari RakeshORCID,Shah Yug,Khanna SakshumORCID,Patel Vivek K.ORCID,Vora JayORCID,Pimenov Danil YurievichORCID,Giasin KhaledORCID

Abstract

In the present study, the effect of alumina (Al2O3) nano-powder was investigated for the electrical discharge machining (EDM) of a Nitinol shape memory alloy (SMA). In addition to the nano-powder concentration, other parameters of pulse-on-time (Ton), pulse-off-time (Toff), and current were selected for the performance measures of the material removal rate (MRR), surface roughness (SR), and tool wear rate (TWR) of Nitinol SMA. The significance of the design variables on all the output measures was analyzed through an analysis of variance (ANOVA). The regression model term has significantly impacted the developed model terms for all the selected measures. In the case of individual variables, Al2O3 powder concentration (PC), Toff, and Ton had significantly impacted MRR, TWR, and SR measures, respectively. The influence of EDM variables were studied through main effect plots. The teaching–learning-based optimization (TLBO) technique was implemented to find an optimal parametric setting for attaining the desired levels of all the performance measures. Pursuant to this, the optimal parametric settings of current at 24 A, PC at 4 g/L, Toff at 10 µs, and Ton of 4 µs have shown optimal input parameters of 43.57 mg/min for MRR, 6.478 mg/min for TWR, and 3.73 µm for SR. These results from the TLBO technique were validated by performing the experiments at the optimal parametric settings of the EDM process. By considering the different user and application requirements, 40 Pareto points with unique solutions were generated. Lastly, scanning electron microscopy (SEM) performed the machined surface analysis. The authors consider this to be very beneficial in the nano-powder-mixed EDM process for appropriate manufacturing operations.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3