Experiment and Numerical Analysis of Thermal Performance of a Billboard External Receiver

Author:

Fang Jiabin,Qaisrani Mumtaz A.ORCID,Tu Nan,Wei Jinjia,Wan Zhenjie,Jin Yabin,Khalid Muhammad,Ahmed Naveed

Abstract

The receiver serves as a critical component in tower-type concentrated solar power plants. Responsible for light-heat conversion, the efficiency of the receiver significantly affects the overall performance of the power plant. In the current study, the thermal performance of external receivers was investigated. An experiment was set up similarly using the solar simulator to experimentally investigate the heat losses of a billboard receiver. A billboard-type external receiver was designed, fabricated, and experimented with. A solar simulator having seven xenon lamps characteristics similar to the sunlight spectrum was used to obtain heat flux at the surface of the receiver. Convection losses in the head-on wind direction were evaluated, along with the radiation losses. The thermal efficiency of the billboard receiver calculated experimentally was around 83.9%. Numerical simulations were also carried out to compare the results against the experimental data. A variation of ±5% observed between both results validate the model proposed in the current study.

Funder

Shaanxi Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. An analysis of convective losses from cavity solar central receivers

2. Convective Losses From Cavity Solar Receivers—Comparisons Between Analytical Predictions and Experimental Results

3. Convection Heat Loss Sensitivity in Open Cavity Solar Receivers;Koenig,1981

4. Experimental study of heat loss through natural convection from an isothermal cubic open cavity;Le Quere,1981

5. Thermal performance of solar concentrator/cavity receiver systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3