Docking of Polyethylenimines Derivatives on Cube Rhombellane Functionalized Homeomorphs

Author:

Szefler BeataORCID,Czeleń PrzemysławORCID

Abstract

Nowadays, in the world of science, an important goal is to create new nanostructures that may act as potential drug carriers. Among different, real or hypothetical, polymeric networks, rhombellanes are very promising and, therefore, attempts were made to deposit polyethylenimines as possible nano-drug complexes on the cube rhombellane homeomorphs surface. For the search of ligand–fullerene interactions, was used AutoDockVina software. As a reference structure, the fullerene C60 was used. After the docking procedure, the ligands–fullerenes interactions were tested. The important factor determining the mutual affinity of the tested ligands and nanocarriers is the symmetry of the analyzed nanostructures. Here, this feature has the influence on the distribution of such groups like donors and acceptors of hydrogen bonds on the surface of nanoparticles. We calculated the best binding affinities of ligands, values of binding constants and differences relative to C60 molecules. The best binding efficiency was found for linear ligands. It was also found that the shorter the molecule, the better the binding performance, the more the particle grows and the lower the yield. Small structures of ligands react easily with small structures of nanoparticles. The highest positive percentage deviations were obtained for ligand–fullerene complexes showing the highest binding energy values. Detailed analysis of structural properties after docking showed that the values of affinity of the studied indolizine ligands to the rhombellanes surface are correlated with the strength/length of hydrogen bonds formed between them.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3