The Internet of Cooperative Agents Architecture (X-IoCA) for Robots, Hybrid Sensor Networks, and MEC Centers in Complex Environments: A Search and Rescue Case Study

Author:

Bravo-Arrabal JuanORCID,Toscano-Moreno ManuelORCID,Fernandez-Lozano J. J.ORCID,Mandow AnthonyORCID,Gomez-Ruiz Jose AntonioORCID,García-Cerezo AlfonsoORCID

Abstract

Cloud robotics and advanced communications can foster a step-change in cooperative robots and hybrid wireless sensor networks (H-WSN) for demanding environments (e.g., disaster response, mining, demolition, and nuclear sites) by enabling the timely sharing of data and computational resources between robot and human teams. However, the operational complexity of such multi-agent systems requires defining effective architectures, coping with implementation details, and testing in realistic deployments. This article proposes X-IoCA, an Internet of robotic things (IoRT) and communication architecture consisting of a hybrid and heterogeneous network of wireless transceivers (H2WTN), based on LoRa and BLE technologies, and a robot operating system (ROS) network. The IoRT is connected to a feedback information system (FIS) distributed among multi-access edge computing (MEC) centers. Furthermore, we present SAR-IoCA, an implementation of the architecture for search and rescue (SAR) integrated into a 5G network. The FIS for this application consists of an SAR-FIS (including a path planner for UGVs considering risks detected by a LoRa H-WSN) and an ROS-FIS (for real-time monitoring and processing of information published throughout the ROS network). Moreover, we discuss lessons learned from using SAR-IoCA in a realistic exercise where three UGVs, a UAV, and responders collaborated to rescue victims from a tunnel accessible through rough terrain.

Funder

Spanish Ministerio de Ciencia, Innovación y Universidades, Gobierno de España

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference65 articles.

1. Cloud robotics with ROS;Toffetti,2020

2. Cloud Robotics and Automation: A Survey of Related Work;Goldberg,2013

3. RoboEarth Semantic Mapping: A Cloud Enabled Knowledge-Based Approach

4. Cloud networked robotics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3