An Integrated Approach to Long-Term Fuel Supply Planning in Combined Heat and Power Systems

Author:

Benalcazar PabloORCID,Kamiński JacekORCID,Stós Karol

Abstract

This paper examines the issue of strategic planning of fuel supplies in combined heat and power systems. This is a major challenge in energy modeling because heating-degree day calculation methods only address short-term horizons and are not suitable for the long-term planning of fuel supplies. In this work, a comprehensive method is proposed for strategic fuel supply planning of independent heat producers. The method considers changes in the market dynamics of residential and commercial properties, the annual rate of customer acquisition by the network operator, customer disconnections, as well as the thermal modernization of buildings for estimating the long-term thermal energy demand of an urban area. Moreover, the method develops a mathematical model to minimize production costs, taking into account the technical constraints of the system. The proposed strategic planning tool, in addition to information on the quantities of fuel consumed for heat and electricity production, also provides valuable management information on the operational costs of the CHP system and its environmental impact. The application of the method is illustrated with the analysis of a large-scale combined heat and power plant supplying heat and electricity to a city with over 500,000 inhabitants. The results indicate that depending on the changes in the primary and secondary heat markets, the demand for energy carriers may range from 107.37 TWh to 119.87 TWh.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3