Evolution of Microstructure, Properties, and Fracture Behavior with Annealing Temperature in Complex Phase Steel with High Formability

Author:

Chu Xiaohong12,Zhou Feng12,Liu Lei12,Xu Xiaolong12,Ma Xiaoyue12,Li Weinan12,Zhao Zhengzhi12ORCID

Affiliation:

1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

2. Beijing Engineering Technology Research Center of Special Steel for Traffic and Energy, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In recent years, with the continuous improvement in the requirements for automobile steel formability, complex phase steel with high formability (CH steel) has been widely used. In the present study, the microstructure of CH steel was regulated using the actual production process as a basis and annealing temperature as a variable, and the effects of annealing temperature on the microstructure, properties, and fracture behavior of CH steel were analyzed. As the annealing temperature increases, the ferrite content decreases from 36.3% to 0, the martensite content decreases from 49.3% to 8.8%, the bainite content increases from 11.9% to 87.1%, and the retained austenite content first increases and then decreases within the range of 2.5~5.1%. Consequently, the tensile strength shows a decreasing trend, the yield strength first decreases and then increases, and the total elongation and the hole expansion ratio first increase and then decrease. The deformation coordination of each phase gradually becomes better, and the voids and cracks in the tensile and hole expansion samples expand along the ferrite and martensite or martensite/austenite (M/A) island interface, transforming into the bainitic ferrite and martensite or M/A islands. The test steel’s best tensile and hole expansion properties occur at annealing temperatures of 940 °C.

Funder

Major Scientific and Technological Innovation Project of the CITIC Group

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3