Geochemical Characteristics and Uranium Neutral Leaching through a CO2 + O2 System—An Example from Uranium Ore of the ELZPA Ore Deposit in Pakistan

Author:

Asghar Fiaz,Sun Zhanxue,Chen Gongxin,Zhou Yipeng,Li Guangrong,Liu Haiyan,Zhao Kai

Abstract

Geochemical characterization studies and batch leaching experiments were conducted to explore the effects of a CO2 + O2 leaching system on uranium (U) recovery from ores obtained from an eastern limb of Zinda Pir Anticline ore deposit in Pakistan. The mineralogy of the ore was identified by Electron Probe Micro-analyzer (EPMA) and Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), showing that pitchblende is the main ore mineral. XRD was also used along with EPMA and SEM characterization data. Experimental results indicate that U mobility was readily facilitated in the CO2 + O2 system with Eh 284 mV and pH 6.24, and an 86% recovery rate of U3O8 was obtained. U speciation analysis implied the formation of UO2 (CO3)22− in the pregnant solution. The plausible mechanism may be attributed to the dissolved CO2 gas that forms carbonate/bicarbonate ion releasing oxidized U from the ore mineral. However, U recovery in the liquid phase was shown to decrease by higher U(VI) initial concentration, which may be due to the saturation of Fe adsorption capacity, as suggested by an increase in Fe concentration with increasing initial U(VI) concentration in the solid phase. However, further studies are needed to reveal the influencing mechanism of U(VI) initial concentration on U recovery in the solid phase. This study provides new insights on the feasibility and validity of the site application of U neutral in situ leaching.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference70 articles.

1. International Atomic Energy Agency. 2012. The Database on Nuclear Power Reactors. World Nuclear Association 2012http://www.iaea.org/pris/

2. Organization for Economic and Co-Operation and Development (OECD) Nuclear Energy Agency (NEA) and the International Atomic Energy Agency,2012

3. World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification,2009

4. Oxidation-Reduction Character Sedimentary Uranium Bearing Rock;Evceeva,1965

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3