The Negative Impact of Blockage on Storm Water Drainage Network

Author:

Fathy Ismail,Abdel-Aal Gamal M.,Fahmy Maha Rashad,Fathy Amira,Zeleňáková MartinaORCID

Abstract

Storm water drainage system in urban areas became a deterministic system, especially in light of the current climate changes. This system eliminates the excess water resulting from heavy rainfall, which leads to disruption of daily life. Irregular maintenance of the network system, problems appear, especially the blockage of the covers or network pipes, which affects the efficiency of the network. This study deals with the experimental investigation of blockage on storm network system and the relationship between efficiency of the system and blockage parameters. Many scenarios of blockage within grate and pipe were studied and its impact on storm system efficiency calculated. For the pipe system, two scenarios were studied; the first one is the blockage of end main pipe with relative blockage height (15%, 30%, 50%, 70%, and 90%). The second one is the blockage through the main pipe with relative blockage height (25%, 50%) and relative blockage length (33%, 67%, and 100%). For grate, the blockage is investigated with the blockage area ratio (12.5%, 25%, 37.5%, and 50%). In addition, the combined blockage of grate and pipe was studied. Finally, an equation has been created to estimate the system efficiency as a function of blockage ratios and system discharges. The results indicated that for surface blockage (12.5%, 25%, 37.5%, and 50%), the discharge efficiency decreased as the amount of blockage increased with different grate blockage by (17.8%, 19.3%, 21%, and 24.6%), respectively.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference21 articles.

1. Capacity of Lateral Storm Water Inlets;Forbes;Civ. Eng. J.,1976

2. Improvements in curb opening and grate inlet efficiency;Hotchkiss;Recent Res. Hydraul. Hydrol.,1994

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3