Laser-Induced Ignition and Combustion of Individual Aluminum Particles Below 10 μm by Microscopic High-Speed Cinematography

Author:

Hou Fengting,Li Shengji,Wang Yue,Huang Xuefeng

Abstract

Metal aluminum has been widely used as an ingredient in propellant, gunpowder and thermite, but there is less understanding of the combustion mechanism of aluminum particles from submicron to several microns in diameter. This paper proposes to experimentally investigate the ignition and combustion characteristics of individual aluminum particles below 10 μm. A specific in situ diagnostic experimental apparatus was first designed for directly observing the ignition and combustion behaviors of individual aluminum particles, with a submicrometer spatial resolution and a temporal resolution of tens of microseconds. Direct observation through microscopic high-speed cinematography demonstrated that, when heated by a continuous laser, individual aluminum particles thermally expanded, followed by shell rupture; the molten aluminum core overflowed and evaporated, leading to ignition and combustion. Further results showed that, when the laser power densities were gradually increased (5.88, 7.56 and 8.81 × 105 W/cm2), the durations of thermal expansion, melting and evaporation were shortened. The required time for the aluminum particles to expand to 150% of their initial diameter was shortened (34 s, 0.34 s and 0.0125 s, respectively). This study will be beneficial to further extend the investigation of other individual metal particles and reveal their combustion mechanism by direct observation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3