Abstract
The self-lubricating effect of the porous oil-containing cage is realized by storing and releasing lubricants through its internal micro-scale pore structure. The internal flow and heat transfer process in the micron-submicron pore structure is crucial to the self-lubricating mechanism of the porous oil-containing cage. To this end, a new modeling method of porous cage was proposed based on random seeds theory, and the local two-dimensional models of porous cage with different micro-scale pore structure were established. The multiphysics coupling simulation analysis of lubricating oil inside the porous cage with the effect of centrifugal force and thermal expansion was carried out based on the COMSOL Multiphysics platform. In order to characterize the micro-scale pore structure, new structural parameter indicators, such as relative surface perimeter, effective porosity, tortuosity and fluid properties related to the internal flow process, were all extracted from the above models. Combing with the Hagen–Poiseuille equation, a flow resistance model of oil flow inside the porous oil-containing cage was obtained. Finally, comparison of simulation results and analytical solutions of the micro-scale resistance model was carried out to verify the correctness of the micro-scale resistance model. The work provides a new direction for the study of the lubrication mechanism of the porous oil-containing cage.
Funder
the National Youth Science Foundation of China
Subject
General Materials Science
Reference21 articles.
1. Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification
2. Study of Preparation Technology for Thermoplastic Polyamide Porous Material;Yan;Lubr. Eng.,2007
3. Oil-containing and Tribological Properties of Porous Polyimide Containing Lubricant Oil;Qiu;Tribology,2012
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献