Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural Network

Author:

Wang Yuxuan,Wu XuebangORCID,Li Xiangyan,Xie ZhuomingORCID,Liu Rui,Liu Wei,Zhang Yange,Xu Yichun,Liu Changsong

Abstract

Predicting mechanical properties of metals from big data is of great importance to materials engineering. The present work aims at applying artificial neural network (ANN) models to predict the tensile properties including yield strength (YS) and ultimate tensile strength (UTS) on austenitic stainless steel as a function of chemical composition, heat treatment and test temperature. The developed models have good prediction performance for YS and UTS, with R values over 0.93. The models were also tested to verify the reliability and accuracy in the context of metallurgical principles and other data published in the literature. In addition, the mean impact value analysis was conducted to quantitatively examine the relative significance of each input variable for the improvement of prediction performance. The trained models can be used as a guideline for the preparation and development of new austenitic stainless steels with the required tensile properties.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference52 articles.

1. Materials Science and Engineering: An Introduction;Callister,2007

2. Steels: Processing, Structure, and Performance;Krauss,2015

3. On nonlinear behavior in brittle heterogeneous materials

4. Materials discovery and design using machine learning

5. Machine Learning: A Probabilistic Perspective;Murphy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3